应用甲醛吸附剂的预防健康隐患型集合住宅施工案例

The construction example of a healthy consideration type apartment using chemical absorbent for formaldehyde.

○笈川大介1)、白石孝道2)、道津隆3)、立花英幸4)、关根嘉香5)

1) AIREX 株式会社、2) 新荣住宅株式会社、3) 银光株式会社、4) 株式会社保健科学东日本、5) 东海大学研究院地球环境科学研究科

ODaisuke Oikawa*, Takamichi Shiraishi**, Dotu Takashi***, Hideyuki Tachibana**** and Yoshika Sekine****

AIREX INC. * Shinei Housing CO., LTD. **GRAFTON INC. ***Health Sciences Research Institute East Japan CO., LTD. ****Graduate School of Earth and Environmental Sciences, Tokai University**** Abstract

Formaldehyde has high carcinogenicity. Being exposed to formaldehyde may increase the risk of developing leukemia cancer. EPA announces the unit risk of formaldehyde with 1.1×10-4µg-1m3. So, we will report on the construction example of a health conscious type apartment using chemical sorbent. We were using GRAFTON, which contain amino group held by radiation-induced copolymerization technology to chemical sorbent. Also, we decided coating area by tested results that JIS A 1905-1/ISO 16000-23. As a result, equivalent air change rate: 0.25 (/h) can be ensured by ceiling only coating. Result, we were able to confirm reduction of formaldehyde in apartment.

关键字: 甲醛、健康隐患、集合住宅、吸附

Key Words: Formaldehyde, Healthy Risk, Apartment, Adsorption

1. 序言

IARC monographs (国际癌症研究机构) (2009) 指出,甲醛是导 致鼻咽癌、白血病及淋巴瘤的诱因物质,NTP(国家毒性项目)也将 甲醛确定为副鼻窦癌、骨髓性白血病的成因之一(2011)。US EPA(美 国环境保护厅) IRIS (综合危险信息系统) 最终报告中显示, 甲醛已 成为新的单位致癌风险因素(2010)。IRIS 提出,考虑到不同年龄段 人群对甲醛的耐受水平(即年龄依赖性调节因子 Age-Dependent Adjustment Factor, ADAF) 存在差别,应将甲醛的单位致癌风险水 平定为 $1.1 \times 10^{-4} \, \mu \, g^{-1} \, m^3$ 。此条件下,2 岁以下婴幼儿的 ADAF 是成人 的 2 倍, 青少年的 ADAF 是成人的 3 倍。与甲醛同为白血病诱因的苯, 其环境标准虽制定在 3 μ g/m³, 但此标准是以癌症诱发率 10⁻⁵ 为基准 制定的。若按与甲醛同等水平的癌症诱发率严格要求, 其环境标准应 定为 0.1 µ g/m³, 这就比国内现行指标值严格了 1000 倍。在法国, 考虑到甲醛长期暴露可能对人体造成的危害,新的方针已经出台 (2011)。即自2015年起将学校等公共设施的环境标准调整为30μ g/m³, 自 2023 年起将此标准进一步调整为 10 µ g/m³。为了尽可能降 低癌症诱发率,有必要在考虑长期暴露危害的基础上采取预防措施。 作为最大程度降低室内甲醛暴露水平的手段之一,我们在装修用的聚 氯乙烯树脂壁纸上涂覆了甲醛吸附剂,以下特就这一试验进行汇报。

2. 试验方法

在聚氯乙烯树脂壁纸(SINCOL 九州株式会社制造)上涂覆适量 甲醛吸附剂作为试样,通过以下试验确认本次施工效果。

2.1 性能评价及对适用面积的探讨

本试验遵照 JIS A 1905-1/ISO 16000-23, 采用小型膨胀室法进行甲醛吸附性能测评。在此前的报告中¹⁾已确认,银光株式会社生产的甲醛吸附材料,其试样承载率与对应换气次数之间的关系可用直线近似表示。因此,在试样承载率为 2.2 (m³/(m²•h))的条件下进行测试,即可判断出施工时应采用的试样承载率。

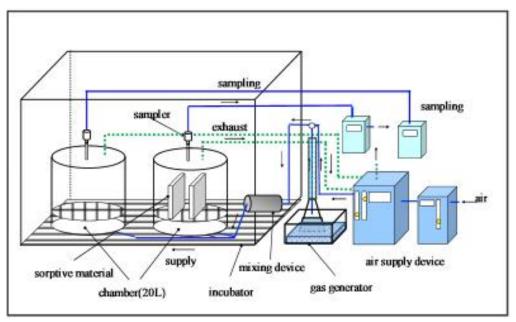


Fig.1 Schematic view of the test chamber system

2.2 效果验证

为确认施工效果,我们以 10 户为对象,分别测定了施工前后室内空气中的甲醛含量。测定前一天,开窗换气后密闭 5 个小时,采用被动采样法进行测定,采样进行了 24 小时。采样中使用了 DSD-DNPH被动采样装置(SUPELCO 公司制造),采用 HPLC-UV(高效液相色谱-紫外检测器)进行定量分析,此时定量分析的下限值为 $2 \, \mu \, g/m^3$ 。

3. 结果•分析

3.1 性能评价及针对适用面积的探讨

从小型膨胀室的试验结果来看,吸附速度为 18.4(µg/(m²•h)), 折合换气量为 0.74 (m³/(m²•h))。由于银光株式会社生产的甲醛 吸附材料试样承载率与折合换气次数之间的关系可用直线近似表示, 为确保本试验中换气次数等于机械换气次数 0.5(/h)的一半,即 0.25 (/h),须将试样承载率设置为 0.35 (m²/m³)。而试样承载率 0.35 (m²/m³) 所需的施工面积只有天花板能够满足,于是我们选择了天 花板作为施工地点,此时使用的甲醛吸附剂涂覆量为 100g/m²。

Fig.1 Construction states photograph of a chemical sorbent coating.

3.2 效果验证

3.2. 测定结果

Table 中显示了本次试验的测定结果。与施工前室内甲醛的平均浓度 20.7 μ g/m³ 相比,施工后该浓度降至 13.9 μ g/m³ ,可确认施工前后室内空气中甲醛浓度存在显著差异 (P> $\alpha_{0.05}$)。另外,试验中发现 801、809 两个位于楼层拐角的房间相对甲醛浓度较高,这也提示我们在应考虑日照带来的影响。

Table 1 Result of the measurement of formaldehyde concentration at before and after construction.

test room	before construction			after constoruction		
	(ppm)	(μg/m³)	In/Out	(ppm)	(μg/m³)	In/Out
801 living room	0.024	30.0	12.0	0.014	17.3	5.6
801 bed room	0.020	24.7	9.9	0.010	13.0	4.2
803 living room	0.010	13.1	5.2	0.008	9.5	3.1
803 bed room	0.016	19.4	7.7	0.005	5.8	1.9
805 living room	0.015	18.5	7.4	0.013	15.9	5.1
805 bed room	0.016	20.5	8.2	0.011	13.2	4.3
807 living room	0.014	18.1	7.2	0.007	8.6	2.8
807 bed room	0.014	18.0	7.2	0.010	12.4	4.0
809 living room	0.012	14.4	5.8	0.014	17.7	5.7
809 bed room	0.025	30.7	12.3	0.021	25.9	8.4
out door	0.002	2.5	155	0.003	3.1	10.50
Average	0.017	20.7	8.3	0.011	13.9	4.5

3.3 施工效果

在室内空气质量测评中,室外空气中的甲醛浓度也是影响试验结果的重要因素之一。本试验中,室内浓度与室外浓度的比值(I/0比)为:施工前平均值8.3,总体范围在最小5.2~最大12.3之间;施工

后平均值 4.5,总体范围在最小 1.9~最大 8.4 之间。如将现行指标值 $100 \, \mu \, g/m^3$ 作为最大值计算,则 I/0 比将分别为 40.0 与 32.2。由此可见,本次施工后空气质量良好。

4. 总结

本次测试证实,在天花板上铺设的聚氯乙烯树脂壁纸上涂覆甲醛 吸附剂,可有效降低甲醛浓度。但考虑到日照条件影响,以及搬入家 具将带来新的甲醛挥发源等问题,还需进一步确认目前的状态是否能 够维持。